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ABSTRACT

Undoped titanium dioxide (TiOz) and a series of chromium(lll) doped TiOz (Cr-doped TiOfig. 1z) with various
%wt Cr atom were prepared by a reflux technique. The undoped TiO2 and Cr-doped TiO; of 1.1, 3.9, 4.4 %wt Cr
atom have been successfully analyzed both qualitative and quantitative analysis of powder X-ray diffraction (XRD)
data. The qualitative analysis was carried out with the identification of phases in all samples by comparison with
Crystallography Open Database (COD) and International Centre for Diffraction Data (ICDD), while the quantitative
phase analysis was calculated by reference intensity ratio (RIR) and whole-pattern fitting (Rietveld analysis)
methods. The undoped TiO: consist of three phases: anatase, rutile, and brookite. In the 1.1 %wt Cr-doped TiO; are
detected presenting two phases: anatase (major) and rutile (minor). In the 3.9 %wt Cr-doped TiOz andin the 4.4 %wt
Cr-doped TiO:z consist of anatase as major phase, while CrO; and TiOz-ll phases can be detected as minor phases.
The undoped TiO2 was refined in the phase, crystal system and space group of anatase (tetragonal, 14+/amd), rutile
(tetragonal, P4:/mnm) and brookite (orthorhombic, Pbca), while the 1.1 %wt Cr-doped TiO; was refined based on
anatase (tetragonal, 14+/amd), rutile (tetragonal, P4z/mnm). Finally, in the 3.9 %wt Cr-doped TiO: and 4.4 %wt Cr-
doped TiOz, respectively were refined in the crystal system and space group of anatase (tetragonal, 141/amd).

Keywords: titanium dioxide; Rietveld analysis; X-ray powder diffraction
ABSTRAK

Titanium dioksida (TiO2) dan TiO, terdadah variasi % berat Cr{lll) berhasil dipreparasi dengan teknik refluks.
Titanium dioksida dan TiO; terdadah 1,1, 3,9; dan 4,4% berat atom Cr dianalisis secara kualitatif dan kuantitatif dari
data difraksi sinar-X (XRD) serbuk. Analisis kualitatif dilakukan dengan cara mencocokkan data pola XRD sampel
dengan data pola XRD standard dari Crystallography Open Database (COD) dan International Centre for Diffraction
Data (ICDD). Analisis kuantitatif dihitung berdasarkan metode ‘reference intensity ratio” (RIR) and “whole-pattern
fitting” (metode Rietveld). Sampel TiO, berisi tiga fasa kristal: anatas, rutil, dan brookit, sedangan TiO» terdadah
1,1% berat atom Cr mengandung dua fasa: anatas (utama) dan rutil (minor). Masing-masing, pada TiO: terdadah
3,9% berat atom Cr dan TiO- terdadah 4,4% berat atom Cr terkandung anatas sebagai fasa utama, sedangkan fasa
CrO; dan TiOz-Il hadir dalam jumlah sangat sedikit. Penghalusan Rietveld pada TiO: dilakukan dengan berdasarkan
atas fasa, sistem kristal dan kelompok ruang: anatas (tetragonal, 14+/amd), rutil (tetragonal, P42/mnm) dan brookit
(orforombik, Pbca), sedangkan pada TiO: terdadah 1,1% berat atom Cr dilakukan penghalusan berdasar atas
sistem kristal dan kelompok ruang: anatas (tetragonal, l4./amd) and rutil (tetragonal, P4./mnm). Akhirnya,
penghalusan struktur pada TiO: terdadah 3,9% berat atom Cr dan pada TiO: terdadah 4,4% berat atom Cr
dilaksanakan berdasar atas sistem kristal dan kelompok ruang: anatas (tetragonal, 14/amd).

Kata Kunci: titanium dioksida; analisis Rietveld; difraksi sinar-X serbuk

INTRODUCTION and non-toxicity. TiO2 is widely employed in various

applications, especially in photocatalyst [1-3],

Titanium dioxide (titania, TiO2) is the most antibacterial [4-6] and photovoltaic devices [7-9], super-

commonly employed of the n-type semiconductors due  hydrophilic and light-induced amphiphilic surfaces [10-
to its high photoactivity and stability, relatively low cost, 12).
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Titanium dioxide has eleven different structure
phases (allotropes): anatase, rutile, brookite, TiOz(B),
TiO2(H)-hollandite, TiO2(R)-ramsdellite, TiOz-columbite
(a-PbOz2 type, TiOz-l), TiOz2-baddeleyite (TiOz-MI), TiOz-
orthorhombic (TiO2-0Ol), TiO2-fluorite (CaFz type), and
TiOz-cotunnite. Three of these crystalline forms of TiO2
occur in nature as mineral: anatase (tetragonal, /41/amd)
[13], rutile (tetragonal, Pda/mnm) [13], and brookite
(orthorhombic, Pbca) [14], but only rutile and anatase
have been able to be synthesized in pure form at low
temperature until recent days.

A semiconductor is characterized by the presence
of band energetic structure, with a band gap between
the lower, valence band (VB) and the higher energetic,
conduction band (CB). Electrons present in the occupied
band (VB) are photoexcited and move to the CB, leaving
a positive charged hole (h*), when the semiconductor is
photo-irradiated by light with photon energy (hv) at least
equal to the band gap. Once formed, the electron (e)
and hole (h*) pair may undergo either fast
recombination. A photocatalytic reaction will occur that
leads to the development of useful processes. Anatase
shows a band gap of 3.2 eV, corresponding to a UV
wavelength adsorption of 387 nm [15]. In contrast, rutile
has a smaller band gap (3.0 eV), with excitation
wavelengths that extend into the visible light range (410
nm) [16] and the band gap of the metastable brookite is
3.54 eV [17]. Many metal ions are used as dopant to
increase the A radiation adsorption, such as niobium
[18], argentum [19-20], vanadium [21], ferrum [22], zinc
[23], and chromium [24-26].

X-ray diffraction is the most useful technigue for
gualitative and quantitative phase analysis in multi-
phase. Qualitative analysis identifies phases in a
specimen compared to "standard" patterns such as
American Society for Testing and Materials (ASTM),
Joint Committee on Powder Diffraction Standards
(JCPDS), Crystallography Open Database (COD),
Inorganic Crystal Structure Database (ICSD) and
International Centre for Diffraction Data (ICDD). X-ray
diffraction pattern gives information about peak
positions, intensity, and shape. Qualitative analysis of
powder diffraction data is the identification of crystal
phase, peak position and intensity related to unique
crystal structure. Quantitative analysis of powder
diffraction data refers to the determination of amounts of
different phases in multi-phase samples. Quantification
can be carried out because the intensity of the diffraction
pattern of a phase or phases in a mixture depends on its
concentration. There are several methods of X-ray
diffraction to quantify phases such as direct comparison,
internal standard, external standard, absorption-
diffraction, reference intensity ratio (RIR) and whole-
pattern fitting (Rietveld analysis) [27-30].
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The objectives of this research are (1) qualitative
phase analysis in undoped titanium dioxide and a
series of chromium doped TiO2 compared to "standard"
patterns: COD and ICDD, (2) analysis of quantitative
phase in the samples by comparing two methods: RIR
and whole-pattern fitting (Rietveld analysis). This
research is important to know the precise and accurate
method of qualitative and quantitative analysis in
determining the crystalline phases contained in a
sample of Cr doped TiO> solid solutions.

EXPERIMENTAL SECTION
Materials

Ammonium hydroxide (NHsOH, 28-30% NH3)
solution, hydrogen peroxide (H202, 10 %wt in H20),
ammonium chromate (NH4)2CrOs, 99%), titanium (IV)
chloride (TiCls, 99%) were purchased from Sigma-
Aldrich. All the reagents were used without further
purification. Titanium dioxide hydrate (Ti(O2)0.2H20)
was obtained from the reaction of TiCls and H202 [31].
A series of chromium(lll) doped TiOz with various %wt
Cr atom were prepared by the reflux technique. In a
typical synthesis, 10 g Ti{02)0.2Hz20 is dissolved in 50
mL of distilled water under vigorous stirring. The
solution was kept stirring for 4 h to obtain colloid A. In
order to investigate the effect of the (NHa4).CrO4
concentration, in a separated beaker 0, 3, 6, and 9 %wt
Cr-doped TiO2 respectively were adopted. It was
dissolved in 20 mL of distiled water thoroughly under
vigorous stirring to obtain solution B1, B2, B3, and B4,
respectively. Each solution B1, B2, B3 and B4 was
then slowly added to each solution A. The final solution
mixture was sealed and further stirred for 2 h, then
added dropwise NHs+OH until pH = 8-10. Finally the
solution is heated with a magnetic stirrer in equipment
reflux at 150 °C for 6 h. Precipitate is filtered, washed
with distiled water and dried at 70 °C for 3 h.
Furthermore, the precipitate was calcined at 600 °C for
2 h.

Instrumentation

In order to obtain XRD powder data, a Rigaku
Miniflex 600-Benchtop diffractometer with a copper
tube and Ka radiation of A = 1.5406 A, operating at 40
kV and 15 mA, was used. The samples were mounted
in a silica glass sample holder. The powder XRD data
were collected in the 20 interval ranging from 2° to 90°
with a step width of 0.02° and a counting time of 5
sec/step.

Scanning electron microscope (Phenom Prox
Desktop SEM) equipped with energy dispersive X-ray
spectroscopy (EDS) was used to analyze the presence
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of Ti and O elements in the TiOz and the presence of Ti,
Cr, and O elements in the Cr-doped TiOx.

Procedure

Qualitative phase analysis

Diffraction patterns are unique "fingerprints” of the
crystal structure of materials that can be used to
determine phase composition of a polycrystalline
material. Phase identification is essentially an exercise
of pattern comparison between the unknown and a
database of single-phase reference patterns. The
qualitative analysis was carried out with the identification
of a phase or phases in the samples by comparison with
“standard” patterns: COD and ICDD.

Quantitative phase analysis

Quantitative analysis of diffraction data usually
refers to the determination of amounts of different
phases in multi-phase samples. The quantitative phase
analysis was calculated by comparing two methods:
reference intensity ratio (RIR) and whole-pattern fitting
(Rietveld analysis).
Reference Intensity Ratio (RIR) method. The RIR is a
method used for quantitative analysis by powder
diffraction and is based upon scaling all diffraction data
to the diffraction of standard reference materials. The
RIR method can be used to determine concentrations by
using ratios and measuring peak areas. Klug and
Alexander were first to describe a technique for
guantification using intensities of the crystalline phases
in a mixture as in equation 1 [27]:

ks a
ks e

where, ratio of peak intensity from unknown phase ‘A’
(linay) to a standard ‘B’ (Inwy) is a linear function of the
mass fraction of ‘A’ in the original sample and the
amount of minerals in known internal standards (eg,
rutile, silica) is used to calibrate unknown phase
intensities.

ICDD PDF-2 uses corundum (Al2Os) as reference
B and gives k for 50:50 mixtures of phase A and
corundum. RIR is Vleer using intensity of the strongest
peak (100%), If l1/leor is k1 and la/leor is k2, then l4/l2 is
kifkz. The RIR values or intensity ratio of the more
intense peak of each phase respect to the (113) peak of
corundum reported in the PDF of the ICDD is expressed
as (2) [32]:

(M

k
Wy = I‘I Weorrundum (2)
113
|conundum RI R‘I.conum:lum
where, w1 = weight fraction of phase 1 and Weorundum =

weight fraction of corundum.
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Whole-pattern fitting method (Rietveld analysis).

Rietveld (1968) developed a method to refine
crystal structure information using neutron powder
diffraction [32]. The Rietveld method is based on a
least-squares fit between step-scan data of a
measured diffraction pattern and a simulated X-ray-
diffraction pattern. The simulated XRD pattern is
calculated from a large number of parameters,
including crystal-structure parameters of each
component phase, a scale factor for each constituent
phase to adjust the relative intensities of the reflections,
parameters describing the peak profile and the
background, and parameters simulating the
instrumental aberrations as well as effects resulting
from size-related strain, preferred orientation, and
particle size. A key feature of the quantitative analysis
of phase proportions by the Rietveld method is that the
phase abundances of the constituent phases can be
directly calculated from the refined scale-factors. To
refine each XRD spectrum in the research, The
Rietveld analysis was applied by using Fullprof
software by Roisnel and Rodriguez Carbajal on the
package WinPlotr [33]. In the refinement procedure, a
calculated pattern is fitted to an observed diffraction
pattern by the least-squares method, until the best fit is
obtained. The least-squares refinement leads to a
minimal residual quantity (yx2) in the Rietveld Method
[34] s,

2
n

=D Wilyi—Yoi(e)] (3)
with wi = 1/c2, being o2 the variance of the
“observation” yi, yi = observed intensity at the i" step,
and y.; = calculated intensity at the it step. The
calculated profile of X-ray powder pattern can be well
described by the equation:

Yei = Z‘tsd,zh@hﬂ(ﬂ ~Tyn)+b; (4)

In Fullprof, the term phase is synonymous of a
same procedure for calculating the integrated
intensities  (lsn). Rietveld phase quantification
(sometimes called also standardless phase analysis,
multiphase Rietveld quantitative analysis or Rietveld
XRD quantification) is a powerful method for
determining the quantities of crystalline and amorphous
components in multiphase mixtures. The weight
fraction (Wi) for each phase was obtained from the
refinement relation [34]:

S, (ZMV ).
\'N\ - |( }I (5)
stj(zmv}j
where i is the value of j for a particular phase among
the N phases present. The S, Z, M, and V are,
respectively, the Rietveld scale factor, the number of
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(c) (a)
Fig 1. EDS analysis and weight percentage of Ti, O and
Cr of (a). undoped TiOz, (b). 1.1 %wt Cr-doped TiOz, (c).
3.9 %wt Cr-doped TiOz, and (d). 4.4 %wt Cr-doped TiO2
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Fig 2. XRD diagram and the result of qualitative analysls
of undoped TiO2
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Fig 3. XRD diagram and the result of gualitative
analysis of 1.1 %wt Cr-doped TiOz
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Fig 4. XRD diagram and the result of qualltatlve
analysis of 3.9 %wt Cr-doped TiOz

weighted profile Ffactor (Rex),
indicator (GoF)).

and goodness of fit

RESULT AND DISCUSSION
EDS Analysis

The scanning electron microscopy-energy
dispersive X-ray spectroscopy (SEM-EDS) analysis
reveals the presence of Ti and O elements in undoped
TiOz and of Ti, Cr, O elements in various %wt Cr-doped
TiOz. On the theoretical, addition of each: 3, 6 and 9
%wt Cr-doped TiO2z produced experimentally only 1.1,
3.9 and 4.4 %wt Cr-doped TiOz respectively (Fig. 1).
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Based on the composition of the atoms, the molecular
formula of solid solutions (Ti1«Cr«O2) for 1.1, 3.9 and 4.4
%wt Cr-doped TiO2 are TioesaCro01702, Tios40Cro.0s00z2,
and Tio932Cro.06802, respectively.

Qualitative Phase Analysis

Fig. 2, 3, 4 and 5 show XRD patterns of undoped
TiOz2and Cr-doped TiOz at various %wt Cr atom. All XRD
patterns exhibit strong diffraction peaks at 26: 25.36,
37.84, 48.11, 54.38, 55.07, and 62.88° indicating TiOz of
anatase phase and at 20: 27.53, 36.14, 41.32, and 54.38
indicating TiOz of rutile phase. The main diffraction
peaks are indexed as the (101), (103), (200), (105),
(211), (213) reflections of crystalline anatase phase,
corresponding to those shown in the ICDD card No. 00-
021-1272 and the main diffraction peaks are indexed as
the (110), (101), (200), (111), (211) reflections of
crystalline rutile phase, corresponding to those shown in
the COD card No. 9004141, In the undoped TiOz, there
are three phases: anatase, rutile, and brookite (Fig. 2).
Fig. 3 shows that the 1.1 %wt Cr-doped TiO2 sample is
detected presenting two phases of TiO2: anatase (major)
and rutile (minor). In the 3.9 %wt Cr-doped TiO2 (Fig. 4)

Indones. J. Chem., 2018, 18 (3), 486 - 495

and the 4.4 %wt Cr-doped TiOz (Fig. 5) show the
presence of anatase (major), rutile (minor), chromium
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Fig 5. XRD diagram and the result of qualitative
analysis of 4.4 %wt Cr-doped TiO:z

Table 1. Phase content of TiO2 and (hkl) in undoped TiO2 and various %wt Cr-doped TiO2

Samples ) (hkl) planes
Undoped 1.1 %wt 3.9 %wt 4.4 %wt
Tio2 Crdoped Cr-doped Cr-doped Anatase Rutile Brookite CrOz Tioz-ll
TiO2 TiO: TiO:
25.36 2529 25.31 25.33 (101) (210) (110)
2710 27.08 (011)
27.53 27.39 (110)
28.39 28.39 (110)
30.95 31.24 31.29 (211) (111)
36.14 36.04 (101)
37.05 36.90 36.94 (103)
37.84 37.76 (004)
38.04 37.80 37.82 37.93 (311)
38.67 (112) (220)
39.24 (200) (400)
40.54 40.43 (020)
41.32 41.34 (111)
4413 (210)
48.11 48.00 48.01 48.01 (200)
53.98 53.99 53.96 (402)
54.38 (105) (211)
55.07 55.10 55.04 55.02 (211)
56.63 (220)
62.88 62.79 62.75 62.72 (213) (002)
64.13 (310) (023)
66.38 (023)
68.96 68.87 68.95 68.77 (116) (301)
69.85 (112)
70.34 70.19 70.20 70.08 (220)
75.06 74.94 75.04 75.02 (215)
75.98 (301)
82.54 8257 8278 82.63 (224) (321) (440)
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Table 2. Phase content of TiO: in undoped TiOz and various %wt Cr-doped TiOz calculated using RIR method

Samples Phase (%)
P Anatase Rutile Brookite CrO: TiO2-l
UndopedTiO:z 52.2 251 22,7 -
1.1 %wt Cr-doped TiO2 B87.0 13.0 - -
3.9 %wt Cr-doped TiO:z 91.0 2.8 - 2.7 3.3
4.4 %wt Cr-doped TiO2 96.0 2.2 - 1.4 0.4
—Phase nane__Content (%] Phasename _ Content 5] all samples calculated by RIR method are showed in
- = Rt s L Table 2. In the undoped TiOz shows the following
Brockite phase compositions: anatase (52.2%), rutile (25.1%)

i

-]’*.‘.

T

(a) I

Phase name Content %) Phase name Content [ %)
Anatass_ syn Mo Anatass_syn 8.0
Rutile, syn 28 Rutile, syn 2.2
Chromium Oxide 2.7 Chromium Oxide 1.4
Titanium Oxide [ TiOz-1l) 33 Titanium Ooide [ TiOz-11) 0.4

.‘n
E

(<)
Fig 6. Composition XRD diagram of (a). undoped TiO2,
(b). 1.1 %wt Cr-doped TiOz, (c). 3.9 %wt Cr-doped TiOz,
and (d). 4.4 %wt Cr-doped TiO2

oxide (minor) and TiOzIl (minor). The results of
identification of a phase or phases and (hkl) in the
samples are showed in Table 1.

Quantitative Phase Analysis
RIR method

Fig. 6 shows the weight fraction of TiOz phases
calculated using the RIR method. The phase content of

and brookite (22.7%), while in the 1.1 %wt Cr-doped
TiO2, its phase composition are anatase (87.0%) and
rutile (13.0%). The chromium oxide, rutile and TiO2-Il
present in the 3.9 %wt Cr-doped TiOz and the 4.4 %wt
Cr-doped TiOz, respectively. In the 3.9 %wt Cr-doped
TiO2 are detected 91.0% of anatase, 2.8% of rutile,
2.7% of CrOz, and 3.3% of TiOz-Il, while in the 4.4 %wt
Cr-doped TiOz consist of 96.0% of anatase, 2.2% of
rutile, 1.4% of CrOz, and 0.4% of TiO2-II.

Whole-pattern fitting method (Rietveld analysis)

X-ray diffraction-Rietveld refinement was carried
out with the method supplied by the Fullprof software to
undoped TiO2 and various %wt Cr-doped TiO2. The
results of Rietveld refinement are shown in Fig. 7, 8, 9
and 10. The experimental points are given as dot (.)
and theoretical data (calculated by eq. (3)) are shown
as solid line. Difference between experimental data and
theoretical is shown as bottom line. The vertical lines
represent the Bragg's allowed peaks. In the undoped
TiOz were refined in the crystal system and space
group of anatase (tetragonal, [44/amd), rutile
(tetragonal, P4z/mnm) and brookite (orthorhombic,
Pbca) (Fig. 7). No reflections of anatase (major) and
rutile (minor) phases are observed in the 1.1 %wt Cr-
doped TiO2 (fig. 8) and it's were refined in the crystal
system and space group of anatase (tetragonal,
l41/amd), and rutile (tetragonal, P4z/mnm). In the 3.9
%wt Cr-doped TiO2 and 4.4 %wt Cr-doped TiO2
respectively consist of anatase phase, while rutile,
chromium dioxide and TiOz-Il phases can’t be detected
by Rietveld refinements. Fig. 9 and 10 depict Fullprof
Pattern Matching of anatase phase in the 3.9 %wt Cr-
doped TiO2 and 4.4 %wt Cr- doped TiO2 respectively.
The results of crystal system, cell parameters (a, b, c)
and atomic position (x, y, z) are presented in Table 3.

Fig. 11 shows the relationship between cell
volumes of anatase at various %wt Cr atom of Cr-
doped TiO2. The cell volume of anatase crystals have
increased with increasing %wt Cr atoms of Cr doped
TiO2. This is due to the replacement of Ti(lV) ions
which have crystal radii of 0.746 A replaced by Cr(lll)
ions having larger crystal radii that is 0.755 A [35].
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Table 3. The crystal system, cell parameters (a, b, ¢) and atomic position (x, y, z) of TiOz phases in undoped TiOz
and various %wt Cr-doped TiO2 calculated by Rietveld method

a b c v

Samples Phase Atom X z
P (A) (A) (A) (A%) :
Anatase T 0.0000 00000  0.5000
Tetragonal, 3.7819 37819 95008 13589 ., )
i o 0.0000 -0.5000  0.5447
: 4
#’.’(‘)""pe" ?rﬁlr‘;gonaL 45901 45901 29553 62.26 2_2 E‘zggi 2‘2222 2‘2222
ez Paaimnm) : : :
Brookite Tis 01202 00912  0.8658
(Orthorhombic,  9.1601 5.4291 51476 25599 O12 0.0331 01830  0.1427
Pbca) 022 02136 00949 05469
Anatase Tiv4 00000 00000 05000
(Tetragonal, 37930 37930 95075 13678 .,
LASEEe (e o 00000 -05000 05447
doped TiO>  Rutile Tits 0.0000  0.0000  0.0000
g‘iﬁ?&an 45925 45925 29574 6237 ., 03061 03041  0.0000
300t cr. Anatase Tiv4 00000  0.0000  0.5000
doped TiOz {, %r=00"?" 37978 3.7978 95205 13732 o2 00000 -0.5000 05405
44 % Cr. Anatase Tiv4 00000  0.0000  0.5000
doped TiOz |, 7re0"™" G182 312 9518 18721 g 00000 -05000 05347
1]
z EH
g z
g £
g™ £
11 1 11 ] 1o I anatase I Z:”I 11 It l 1 II1II :r I:I Ill :ﬁ:se
|1 1 [ 1 I 1 | rutile
1 I irmE W Ul My ey breokile 'MWW
ir; : ~ . : 18 25 32 39 6 53 &0 T =3 a8
5 5. 7 & 5 4 1
18 2 32 k] -'ig Tllelaj[deg '50 &T 4 8l aa 3 Theta (deg)

Fig 7. X-ray diffraction Fullprof Patern Matching of

undoped TiOz

Intensity {a.u.)

Fig 8. X-ray diffraction Fullprof Patern Matching of 1.1
%wt chromium doped TiO2

Intensity {a.0.}

| 1 anatase | I I I 11 1m anatase

18 25 32 39 74 81 88

dg Therg};rleg}w
Fig 9. X-ray diffraction Fullprof Patern Matching of 3.9
%wt chromium doped TiO2

1
WJ!.‘.‘_ A m m e a
Ll Sy ey

67 T4 31 a8

18 25 32 39 48 53 60
2 Theta [deg)

Fig 10. X-ray diffraction Fullprof Patern Matching of 4.4
%wt chromium doped TiO2
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Table 4. Phase content of TiOz in undoped TiOz and various %wt Cr-doped TiO2 calculated using Rietveld method

Phase (% Re Rup Rexp
Campise At Rl Broois G, ToaT— 00 ok, e OF
Undoped TiOz 49.58 38.39 12.03 - - 7.02 9.06 8.37 1.08
1.1 %wt Cr-
doped TiOz 88.45 11.50 - - - 7.53 972 943 1.03
3.9 %wt Cr-
doped TiO; 100.00 - - - - 7.84 10.30 8.69 1.18
4.4 %wt Cr-
doped TiO> 100.00 - - - - 8.20 11.10 8.88 1.25
137.4 1 o 4.4 %wt Cr-doped TiO2. The gquantitative phase
137.2 = analysis was calculated by comparing two methods:
1370 - : reference intensity ratio (RIR) and whole-pattern fitting
%1363 ] (Rietveld analysis). The phase content of all samples
g 2 calculated by RIR method are showed that the
g 1365 1 undoped TiOz consist of anatase (52.2%), rutile
Z 1364 (25.1%) and brookite (22.7%) phases, while in the
& 1352 1.1.%wt Cr-doped TiOz present anatase (87.0%) and
136.0 rutile (13.0%). In the 3.9 %wt Cr-doped TiOz are
& } ] detected anatase (91.0%), rutile (2.8%), CrO2z (2.7%),
il A s s H :  and TiO2-ll (3.3%), while in the 4.4 %wt Cr-doped TiO2
wi% Cr atom have contents anatase (96.0%), rutile (2.2%), CrO:

Fig 11. Cell volume of anatase at various %wt Cr atom
of Cr-doped TiO2

The weight percentages of the phases were
calculated by using the Rietveld method with the Fullprof
software. Quantitative phase analysis obtained by
Rietveld analysis by eq. (5). By the Rietveld refinement,
the wundoped TiO: shows the following phase
compositions: anatase (49.58%), rutile (38.39%) and
brookite (12.03%), while in the 1.1.%wt Cr-doped TiOz,
its phase composition are anatase (88.45%) and rutile
(11.50%). In the 3.9 %wt Cr-doped TiOz and 4.4 %wt Cr-
doped TiO:2 respectively consist of 100% of anatase
phase, while rutile, chromium dioxide and TiOz-l phases
can't be refined by Rietveld analysis. According to these
results and the quality of the agreement between
observed and calculated profiles, it can be saw that the
handling of Table 4.

CONCLUSION

Undoped TiOz and 1.1, 3.9, 4.4 %wt Cr-doped TiOz
have been successfully analyzed from powder x-ray
diffraction data by qualitative and quantitative analysis
using various method. Qualitative analysis was carried
out with the identification of a phase or phases in the
samples by comparison with “standard” patterns: COD
and ICDD. In the undoped TiOz, three titania phases:
anatase, rutile, and brookite were obtained. In the 1.1
%wt Cr-doped TiO:2 is detected presenting two phases of
TiOz: anatase (major) and rutile (minor), while anatase
(major), rutile (minor), chromium oxide (minor) and TiOz-
Il (minor) present in the 3.9 %wt Cr-doped TiOz and the

(1.4%), and TiO2-1l (0.4%). The Rietveld refinement
method was applied to extract structural parameters of
undoped TiO2 and a series of various %wt Cr-doped
TiO2 using the Fullprof program. The undoped TiO2
consist of anatase (49.58%), rutile (38.39%) and
brookite (12.03%), while in the 1.1 %wt Cr-doped TiO2
present anatase (88.45%) and rutile (11.50%) phases.
In the 3.8 %wt Cr-doped TiOz and in the 4.4 %wt Cr-
doped TiO2 respectively consist of 100% of anatase
phase, while chromium dioxide and TiOz-ll phases
cant be detected by Rietveld refinements. The
undoped TiOz was refined in the crystal system and
space group of anatase (tetragonal, l4+«/amd), rutile
(tetragonal, P4z2/mnm) and brookite (orthorhombic,
Pbca), while the 1.1.%wt Cr-doped TiO2 was refined in
the crystal system and space group of anatase
(tetragonal, 141/amd), rutile (tetragonal, P42/mnm).
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